Tuesday, June 21, 2022

1. BST Code

 // Binary Search Tree operations in C


#include <stdio.h>

#include <stdlib.h>


struct node {

  int key;

  struct node *left, *right;

};


// Create a node

struct node *newNode(int item) {

  struct node *temp = (struct node *)malloc(sizeof(struct node));

  temp->key = item;

  temp->left = temp->right = NULL;

  return temp;

}


// Inorder Traversal

void inorder(struct node *root) {

  if (root != NULL) {

    // Traverse left

    inorder(root->left);


    // Traverse root

    printf("%d -> ", root->key);


    // Traverse right

    inorder(root->right);

  }

}


// Insert a node

struct node *insert(struct node *node, int key) {

  // Return a new node if the tree is empty

  if (node == NULL) return newNode(key);


  // Traverse to the right place and insert the node

  if (key < node->key)

    node->left = insert(node->left, key);

  else

    node->right = insert(node->right, key);


  return node;

}


// Find the inorder successor

struct node *minValueNode(struct node *node) {

  struct node *current = node;


  // Find the leftmost leaf

  while (current && current->left != NULL)

    current = current->left;


  return current;

}


// Deleting a node

struct node *deleteNode(struct node *root, int key) {

  // Return if the tree is empty

  if (root == NULL) return root;


  // Find the node to be deleted

  if (key < root->key)

    root->left = deleteNode(root->left, key);

  else if (key > root->key)

    root->right = deleteNode(root->right, key);


  else {

    // If the node is with only one child or no child

    if (root->left == NULL) {

      struct node *temp = root->right;

      free(root);

      return temp;

    } else if (root->right == NULL) {

      struct node *temp = root->left;

      free(root);

      return temp;

    }


    // If the node has two children

    struct node *temp = minValueNode(root->right);


    // Place the inorder successor in position of the node to be deleted

    root->key = temp->key;


    // Delete the inorder successor

    root->right = deleteNode(root->right, temp->key);

  }

  return root;

}


// Driver code

int main() {

  struct node *root = NULL;

  root = insert(root, 8);

  root = insert(root, 3);

  root = insert(root, 1);

  root = insert(root, 6);

  root = insert(root, 7);

  root = insert(root, 10);

  root = insert(root, 14);

  root = insert(root, 4);


  printf("Inorder traversal: ");

  inorder(root);


  printf("\nAfter deleting 10\n");

  root = deleteNode(root, 10);

  printf("Inorder traversal: ");

  inorder(root);

}

No comments:

Post a Comment

9_Regular Expressions

Regular expressions- Sometimes in HTML, the developer defines more than one class name ( that’s class input has more than one name Here ...