Wednesday, June 22, 2022

AVL TREE

 // Through this code we will learn how to insert in a BST and then perform different rotations so that it becomes AVL Tree. 


// Video Link to each function used in this code is given here -

Sub Functions for Rotations   - https://youtu.be/5lG8WfL0KTU

// Actual code starts here ....

#include <stdio.h>

#include <stdlib.h>

struct node {

  int key;

  struct node *left, *right;

};

// Create a node

struct node *newNode(int item) {

struct node *temp = (struct node *)malloc(sizeof(struct node));

  temp->key = item;

  temp->left = temp->right = NULL;

  return temp;

}

// preoder Traversal

void preorder(struct node *t) {

  if(t!=NULL)

  {

  printf("%d -> ", t->key);

  preorder(t->left);

  preorder(t->right);

  }

    }

  // Inoder Traversal

void inorder(struct node *t) {

  if(t!=NULL)

  {

    inorder(t->left);

  printf("%d -> ", t->key);

    inorder(t->right);

  }

    }

// Find the inorder successor

struct node *minValueNode(struct node *node) {

  struct node *current = node;

  // Find the leftmost leaf

  while (current && current->left != NULL)


    current = current->left;

  return current;

}

// Deleting a node

struct node *deleteNode(struct node *root, int key) {

  // Return if the tree is empty

  if (root == NULL) return root;

  // Find the node to be deleted

  if (key < root->key)

    root->left = deleteNode(root->left, key);

  else if (key > root->key)

    root->right = deleteNode(root->right, key);

  else {

    // If the node is with only one child or no child

    if (root->left == NULL) {

      struct node *temp = root->right;

      free(root);

      return temp;

    } else if (root->right == NULL) {

      struct node *temp = root->left;

      free(root);

      return temp;

    }

    // If the node has two children

    struct node *temp = minValueNode(root->right);

    // Place the inorder successor in position of the node to be deleted

    root->key = temp->key;

   // Delete the inorder successor

   root->right = deleteNode(root->right, temp->key);

 }

  return root;

}

// Sub function for height()

int height(struct node *t)

{

if(!t)

return 0;

 if (!(t->left) && !(t->right)) // --> assume leaf node is at height 1

 return 1;

  int l,r;

 l=height(t->left);

 r=height(t->right);

 int p=l>r?l:r;

 return(1+(p));

 }

// Sub function for diff()

int diff(struct node *t)

{

int left= height(t->left);

int right= height(t->right);

int difference;

difference=left-right;

return difference;

}

// Sub function for LL_Rotation

struct node *LL_Rotation(struct node *t)

{

struct node *curr;

curr=t->left;

t->left=curr->right;

curr->right=t;

return curr;

}

// Sub function for RR_Rotation


struct node *RR_Rotation(struct node *t)

{

struct node *curr;

curr=t->right;

t->right=curr->left;

curr->left=t;

return curr;

}


// Sub function for RL_Rotation

struct node *RL_Rotation(struct node *t)

{

t->right=LL_Rotation(t->right);

t=RR_Rotation(t);

return t;

}

// Sub function for lR_Rotation

struct node *LR_Rotation(struct node *t)

{

t->left=RR_Rotation(t->left);

t=LL_Rotation(t);

return t;

}

// calculating balanceing  factor 

struct node *balance( struct node *curr)

{

int getbalance=diff(curr);

if (getbalance>1)

{

if(diff(curr->left)>0)

curr=LL_Rotation(curr);

else

curr=LR_Rotation(curr);

}

else if(getbalance<-1)

{

if(diff(curr->right)>0)

curr=RL_Rotation(curr);

else

curr=RR_Rotation(curr);

}

return curr;

}


// Insert a node

struct node *insert(struct node *curr, int key) 

{

  // Return a new node if the tree is empty

  if (curr == NULL) return newNode(key);

  // Traverse to the right place and insert the node

  if (key < curr->key)

  {

  curr->left = insert(curr->left, key);

   

  }

    

  else

  {

  curr->right = insert(curr->right, key);

  

  }

   

   curr=balance(curr);

   return curr;

}


// Driver code


int main() {


  struct node *root = NULL;

  root = insert(root, 3);

  root = insert(root, 2);

  root = insert(root, 1);


  root = insert(root, 6);

  root = insert(root, 7);

  root =insert(root, 10);

  root = insert(root, 14);

  root = insert(root, 4);

  printf("Inorder traversal: ");

  inorder(root);

printf("pre-order traversal: ");

 preorder(root);

  //printf("\nAfter deleting 10\n");

  //root = deleteNode(root, 10);

 // printf("Inorder traversal: ");


 // inorder(root);


}




No comments:

Post a Comment

9_Regular Expressions

Regular expressions- Sometimes in HTML, the developer defines more than one class name ( that’s class input has more than one name Here ...